Beneficial effect on podocyte number in experimental diabetic nephropathy resulting from combined atrasentan and RAAS inhibition therapy

Author:

Hudkins Kelly L.1,Wietecha Tomasz A.1,Steegh Floor1,Alpers Charles E.1

Affiliation:

1. Department of Pathology, University of Washington, Seattle, Washington

Abstract

Podocyte loss and proteinuria are both key features of human diabetic nephropathy (DN). The leptin-deficient BTBR mouse strain with the ob/ob mutation develops progressive weight gain, type 2 diabetes, and diabetic nephropathy that has many features of advanced human DN, including increased mesangial matrix, mesangiolysis, podocyte loss, and proteinuria. Selective antagonism of the endothelin-1 type A receptor (ETAR) by atrasentan treatment in combination with renin-angiotensin-aldosterone system inhibition with losartan has been shown to have the therapeutic benefit of lowering proteinuria in patients with DN, but the underlying mechanism for this benefit is not well understood. Using a similar therapeutic approach in diabetic BTBR ob/ob mice, this treatment regimen significantly increased glomerular podocyte number compared with diabetic BTBR ob/ob controls and suggested that parietal epithelial cells were a source for podocyte restoration. Atrasentan treatment alone also increased podocyte number but to a lesser degree. Mice treated with atrasentan demonstrated a reduction in proteinuria, matching the functional improvement reported in humans. This is a first demonstration that treatment with the highly selective ETAR antagonist atrasentan can lead to restoration of the diminished podocyte number characteristic of DN in humans and thereby underlies the reduction in proteinuria in patients with diabetes undergoing similar treatment. The benefit of ETAR antagonism in DN extended to a decrease in mesangial matrix as measured by a reduction in accumulations of collagen type IV in both the atrasentan and atrasentan + losartan-treated groups compared with untreated controls.

Funder

Abbvie Inc

Publisher

American Physiological Society

Subject

Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3