Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice

Author:

Andres-Hernando Ana1,Lanaspa Miguel A.1ORCID,Kuwabara Masanari12,Orlicky David J.3,Cicerchi Christina1,Bales Elise4,Garcia Gabriela E.1,Roncal-Jimenez Carlos A.1,Sato Yuka1,Johnson Richard J.1ORCID

Affiliation:

1. Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado

2. Toranomon Hospital, Department of Cardiology, Tokyo, Japan

3. Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado

4. Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado

Abstract

Obesity and metabolic syndrome are well-known risk factors for chronic kidney disease (CKD); however, less is known about the mechanism(s) by which metabolic syndrome might accelerate kidney disease. We hypothesized that metabolic syndrome should accelerate the development of kidney disease and that it might be associated with alterations in energy metabolism. We studied the pound mouse (which develops early metabolic syndrome due to a leptin receptor deletion) and wild-type littermates and compared the level of renal injury and muscle wasting after equivalent injury with oral adenine. Renal function, histology, and biochemical analyses were performed. The presence of metabolic syndrome was associated with earlier development of renal disease (12 mo) and earlier mortality in pound mice compared with controls. After administration of adenine, kidney disease was worse in pound mice, and this was associated with greater tubular injury with a decrease in kidney mitochondria, lower tissue ATP levels, and worse oxidative stress. Pound mice with similar levels of renal function as adenine-treated wild-type mice also showed worse sarcopenia, with lower tissue ATP and intracellular phosphate levels. In summary, our data demonstrate that obesity and metabolic syndrome accelerate the progression of CKD and worsen CKD-dependent sarcopenia. Both conditions are associated with renal alterations in energy metabolism and lower tissue ATP levels secondary to mitochondrial dysfunction and reduced mitochondrial number.

Funder

VA Merit Award

Publisher

American Physiological Society

Subject

Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3