Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension

Author:

Manhiani Marlina,Quigley Jeffrey E.,Knight Sarah F.,Tasoobshirazi Shiva,Moore TarRhonda,Brands Michael W.,Hammock Bruce D.,Imig John D.

Abstract

Inhibition of soluble epoxide hydrolase (sEH) has been shown to be renal protective in rat models of salt-sensitive hypertension. Here, we hypothesize that targeted disruption of the sEH gene (Ephx2) prevents both renal inflammation and injury in deoxycorticosterone acetate plus high salt (DOCA-salt) hypertensive mice. Mean arterial blood pressure (MAP) increased significantly in the DOCA-salt groups, and MAP was lower in Ephx2−/− DOCA-salt (129 ± 3 mmHg) compared with wild-type (WT) DOCA-salt (145 ± 2 mmHg) mice. Following 21 days of treatment, WT DOCA-salt urinary MCP-1 excretion increased from control and was attenuated in the Ephx2−/− DOCA-salt group. Macrophage infiltration was reduced in Ephx2−/− DOCA-salt compared with WT DOCA-salt mice. Albuminuria increased in WT DOCA-salt (278 ± 55 μg/day) compared with control (17 ± 1 μg/day) and was blunted in the Ephx2−/− DOCA-salt mice (97 ± 23 μg/day). Glomerular nephrin expression demonstrated an inverse relationship with albuminuria. Nephrin immunofluorescence was greater in the Ephx2−/− DOCA-salt group (3.4 ± 0.3 RFU) compared with WT DOCA-salt group (1.1 ± 0.07 RFU). Reduction in renal inflammation and injury was also seen in WT DOCA-salt mice treated with a sEH inhibitor { trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid; tAUCB}, demonstrating that the C-terminal hydrolase domain of the sEH enzyme is responsible for renal protection with DOCA-salt hypertension. These data demonstrate that Ephx2 gene deletion decreases blood pressure, attenuates renal inflammation, and ameliorates glomerular injury in DOCA-salt hypertension.

Publisher

American Physiological Society

Subject

Physiology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3