Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules

Author:

Sabolic Ivan1,Ljubojevic Marija1,Herak-Kramberger Carol M.1,Brown Dennis2

Affiliation:

1. Unit of Molecular Toxicology, Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia; and

2. Program in Membrane Biology and Renal Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129

Abstract

Nephrotoxicity in humans and experimental animals due to chronic exposure to cadmium (Cd) is manifested by defects in the reabsorptive and secretory functions of proximal tubules (PT). The main symptoms of Cd nephrotoxicity, including polyuria, phosphaturia, aminoaciduria, glucosuria, and proteinuria, suggest that various brush-border membrane (BBM) transporters are the main targets of Cd. Specific transporters may be either directly inhibited by Cd or lost from the BBM after Cd treatment, or both. We have recently proposed that Cd may impair the vesicle-dependent recycling of BBM transporters by inhibiting vacuolar H+-ATPase (V-ATPase) activity and endocytosis in PT cells (Herak-Kramberger CM, Sabolic I, and Brown D. Kidney Int 53: 1713–1726, 1998). The mechanism underlying the Cd effect was further explored in an in vivo model of experimental Cd nephrotoxicity induced by Cd-metallothionein (Cd-MT; 0.4 mg Cd/kg body mass; a single dose sc) in rats. The time-dependent redistribution of various BBM transporters was examined in this model by fluorescence and gold-labeling immunocytochemistry on tissue sections and by immunoblotting of isolated renal cortical BBM. In PT cells of Cd-MT-treated rats, we observed 1) shortening and loss of microvilli; 2) time-dependent loss of megalin, V-ATPase, aquaporin-1 (AQP1), and type 3 Na+/H+ exchanger (NHE3) from the BBM; 3) redistribution of these transporters into vesicles that were randomly scattered throughout the cell cytoplasm; and 4) redistribution of NHE3, but not megalin, into the basolateral plasma membrane. The internalization of BBM transporters was accompanied by fragmentation and loss of microtubules and by an increased abundance of α-tubulin monomers in PT cells. Transporter redistribution was detectable as early as 1 h after Cd-MT treatment and increased in magnitude over the next 12 h. We conclude that the early mechanism of Cd toxicity in PT cells may include a colchicine-like depolymerization of microtubules and impaired vesicle-dependent recycling of various BBM proteins. These processes may lead to a time-dependent loss of cell membrane components, resulting in reabsorptive and secretory defects that occur in Cd-induced nephrotoxicity.

Publisher

American Physiological Society

Subject

Physiology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hsp27 over expression protect against cadmium induced nephrotoxicity in Drosophila melanogaster;Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology;2023-11

2. Toxic Nephropathies;Evidence‐Based Nephrology;2022-11-18

3. Cadmium chloride-induced apoptosis of HK-2 cells via interfering with mitochondrial respiratory chain;Ecotoxicology and Environmental Safety;2022-05

4. Cadmium;Handbook on the Toxicology of Metals;2022

5. Ion regulation in a freshwater crab, Potamonautes warreni: The effects of trace metal exposure;Aquatic Toxicology;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3