Nitric oxide mediates anomalous tubuloglomerular feedback in rats fed high-NaCl diet after subtotal nephrectomy

Author:

Thomson Scott C.1

Affiliation:

1. Division of Nephrology-Hypertension, VA San Diego Healthcare System and University of California, San Diego School of Medicine, La Jolla, California

Abstract

Tubuloglomerular feedback (TGF) responses become anomalous in rats fed high-NaCl diet after subtotal nephrectomy (STN), such that stimulating TGF causes single nephron GFR (SNGFR) to increase rather than decrease. Micropuncture experiments were performed to determine whether this anomaly results from heightened nitric oxide response to distal delivery, which is a known mechanism for resetting TGF, or from connecting tubule TGF (cTGF), which is a novel amiloride-inhibitable system for offsetting TGF responses. Micropuncture was done in Wistar Froemter rats fed high-NaCl diet (HS) for 8–10 days after STN or sham nephrectomy. TGF was manipulated by orthograde microperfusion of Henle’s loop with artificial tubular fluid with or without NOS inhibitor, LNMMA, or the cell-impermeant amiloride analog, benzamil. SNGFR was measured by inulin clearance in tubular fluid collections from the late proximal tubule. TGF responses were quantified as the increase in SNGFR that occurred when the perfusion rate was reduced from 50 to 8 nl/min in STN or 40 to 8 nl/min in sham animals. The baseline TGF response was anomalous in STN HS (−4 ± 3 vs 14 ± 3 nl/min, P < 0.001). TGF response was normalized by perfusing STN nephron with LNMMA (14 ± 3 nl/min, P < 0.005 for ANOVA cross term) but not with benzamil (−3 ± 4 nl/min, P = 0.4 for ANOVA cross term). Anomalous TGF occurs in STN HS due to heightened effect of tubular flow on nitric oxide signaling, which increases to the point of overriding the normal TGF response. There is no role for cTGF in this phenomenon.

Funder

U.S. Department of Veterans Affairs (VA)

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3