Activation of the extracellular signal-regulated kinase by complement C5b-9

Author:

Cybulsky Andrey V.,Takano Tomoko,Papillon Joan,Bijian Krikor,Guillemette Julie

Abstract

Extracellular signals may be transmitted to nuclear or cytoplasmic effectors via the mitogen-activated protein kinases. In the passive Heymann nephritis (PHN) model of membranous nephropathy, complement C5b-9 induces glomerular epithelial cell (GEC) injury, proteinuria, and activation of phospholipases and protein kinases. This study addresses the complement-mediated activation of the extracellular signal-regulated kinase (ERK). C5b-9 induced ERK threonine202/tyrosine204 phosphorylation (which correlates with activation) in GEC in culture and PHN in vivo. Expression of a dominant-inhibitory mutant of Ras reduced complement-mediated activation of ERK, but activation was not affected significantly by downregulation of protein kinase C. Complement-induced ERK activation resulted in phosphorylation of cytosolic phospholipase A2 and was, in part, responsible for phosphorylation of mitogen-activated protein kinase-associated protein kinase-2, but did not induce phosphorylation of the transcription factor, Elk-1. Activation of ERK was attenuated by drugs that disassemble the actin cytoskeleton (cytochalasin D, latrunculin B), and these compounds interfered with the activation of ERK by mitogen-activated protein kinase kinase (MEK). Overexpression of a constitutively active RhoA as well as inhibition of Rho-associated kinase blocked complement-mediated ERK activation. Complement cytotoxicity was enhanced after disassembly of the actin cytoskeleton but was unaffected after inhibition of complement-induced ERK activation. However, complement cytotoxicity was enhanced in GEC that stably express constitutively active MEK. Thus complement-induced ERK activation depends on cytoskeletal remodelling and affects the regulation of distinct downstream substrates, while chronic, constitutive ERK activation exacerbates complement-mediated GEC injury.

Publisher

American Physiological Society

Subject

Physiology

Reference52 articles.

1. p38 Mitogen-activated protein kinase protects glomerular epithelial cells from complement-mediated cell injury

2. The Calcium Entry Pas de Deux

3. Extracellular matrix regulates glomerular epithelial cell survival and proliferation

4. Rho GTPases and their effector proteins

5. Coers W, Reivinen J, Miettinen A, Huitema S, Vos JT, Salant DJ, and Weening JJ. Characterization of a rat glomerular visceral epithelial cell line. Exp Nephrol 4: 184–192, 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3