Dissociation of proximal tubular glucose and Na+ reabsorption by amphotericin B

Author:

Aronson P. S.,Hayslett J. P.,Kashgarian M.

Abstract

The effect of amphotericin B on glucose and Na+ transport was studied in the Necturus proximal tubule and in microvillus membrane vesicles isolated from the rabbit renal cortex. In the Necturus experiments, the rate constants for disappearance of radiolabeled glucose (kG) and mannitol (kM) from the tubular lumen were determined by stop-flow microperfusion. Saturability and Na+-dependence of glucose reabsorption was confirmed, since kG was reduced by raising intratubular glucose from 1 to 5 mM or by replacing intratubular Na+ with choline. Neither maneuver affected kM. Intratubular amphotericin B (10 microgram/ml), previously shown to stimulate active Na+ reabsorption in the Necturus proximal tubule, inhibited kG with no effect on kM. In the membrane vesicle preparation, amphotericin inhibited the uphill glucose uptake which results from imposing a NaCl gradient from outside to inside, but had no effect on glucose uptake in either the absence of Na+ or in the presence of Na+ when there was no Na+ gradient. Amphotericin B stimulated the uptake of Na+ by the vesicles. The observed dissociation of glucose and Na+ transport by amphotericin B is consistent with the concept that proximal tubular glucose reabsorption is energized by the luminal membrane Na+ gradient and is not directly linked to active Na+ transport per se.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3