Transport and metabolism of octanoate by the perfused rat kidney

Author:

Trimble M. E.

Abstract

These studies were done to determine the capacity of the perfused rat kidney to metabolize and transport the medium-chain fatty acid, octanoate (C8). Use of C8, which is water soluble, facilitated the study of transport, since protein, normally needed to transport long-chain fatty acids in solution, could be omitted from the perfusate. Using a filtering kidney it was found that total metabolism and incorporation of [1-14C]octanoate occurred at a rate of 3.9 +/- 0.3 micromol-g wet wt-1-20 min-1 when the perfusate octanoate was 2.8 mM, and reabsorptive uptake occurred at the rate of 7.5 +/- 1.3 micromol-g wet wt-1-20 min-1 at the same octanoate concentration. Use of a nonfiltering kidney (10% dextran perfusate) allowed quantitation of peritubular octanoate uptake. This peritubular uptake showed saturation above 0.7 mM perfusate octanoate with an apparent transport maximum (Tmax) at 2.1 micromol-g wet wt-1-20 min-1. Many previous experiments have linked renal fatty acid transport with that of the organic anion transport system. The apparent peritubular Tmax observed for octanoate suggests carrier-mediated transport. However, this transport did not appear to be inhibited by other organic acids such as probenecid (1--2 mM) and p-aminohippurate (1--2 mM).

Publisher

American Physiological Society

Subject

Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3