Methyl-β-cyclodextrin induces vasopressin-independent apical accumulation of aquaporin-2 in the isolated, perfused rat kidney

Author:

Russo Leileata M.,McKee Mary,Brown Dennis

Abstract

Vasopressin increases urine concentration by stimulating plasma membrane accumulation of aquaporin-2 (AQP2) in collecting duct principal cells, allowing bulk water flow across the collecting duct from lumen to interstitium down an osmotic gradient. Mutations in the vasopressin type 2 receptor (V2R) cause hereditary X-linked nephrogenic diabetes insipidus (NDI), a disease characterized by excessive urination and dehydration. Recently, we showed that inhibition of endocytosis by the cholesterol-depleting drug methyl-β-cyclodextrin (mβCD) induces plasma membrane accumulation of AQP2 in transfected renal epithelial cells overexpressing epitope-tagged AQP2. Here, we asked whether mβCD could induce membrane accumulation of AQP2 in situ using the isolated, perfused kidney (IPK). By immunofluorescence and electron microscopy, we show that AQP2 was shifted from a predominantly intracellular localization to the apical membrane of principal cells following 1-h perfusion of Sprague-Dawley rat kidneys with 5 mM mβCD. Quantification of staining revealed that the intensity of AQP2 was increased from 647 ± 114 (control) to 1,968 ± 299 units (mβCD; P < 0.001), an effect similar to that seen after perfusion with 4 nM dDAVP (1,860 ± 298, P < 0.001). Similar changes were observed following mβCD perfusion of kidneys from vasopressin-deficient Brattleboro rats. No effect of mβCD treatment on the basolateral distribution of AQP3 and AQP4 was detected. These data indicate that AQP2 constitutively recycles between the apical membrane and intracellular vesicles in principal cells in situ and that inducing apical AQP2 accumulation by inhibiting AQP2 endocytosis is a feasible goal for bypassing the defective V2R signaling pathway in X-linked NDI.

Publisher

American Physiological Society

Subject

Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3