Targeted degradation of ENaC in response to PKC activation of the ERK1/2 cascade

Author:

Booth Rachell E.1,Stockand James D.1

Affiliation:

1. Department of Physiology, University Health Science Center, San Antonio, Texas 78229-3900

Abstract

Renal A6 epithelial cells were used to determine the mechanism by which protein kinase C (PKC) decreases epithelial Na+ channel (ENaC) activity. Activation of PKC reduced relative Na+ reabsorption to <20% within 60 min. This decrease was sustained over the next 24–48 h. In response to PKC signaling, α-, β-, and γ-ENaC levels were 0.97, 0.36, and 0.39, respectively, after 24 h, with the levels of the latter two subunits being significantly decreased. The PKC-mediated decreases in β- and γ-ENaC were significantly reversed by simultaneous addition of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase-1/2 inhibitors U-0126 and PD-98059. These inhibitors, in addition, protected Na+ reabsorption from PKC, demonstrating that the MAPK1/2 cascade, in some instances, plays a central role in downregulation of ENaC activity. The effects of PKC on β- and γ-ENaC levels were additive with those of inhibitors of transcription (actinomycin D) and translation (emetine and cycloheximide), suggesting that PKC promotes subunit degradation and does not affect subunit synthesis. The bulk of whole cell γ-ENaC was degraded within 1 h after treatment with inhibitors of synthesis; however, a significant pool was “protected” from inhibitors for up to 12 h. PKC affected this protected pool of γ-ENaC. Moreover, proteosome inhibitors (MG-132 and lactacystin) reversed PKC effects on this protected pool of γ-ENaC. Thus PKC signaling via MAPK1/2 cascade activation in A6 cells promotes degradation of γ-ENaC.

Publisher

American Physiological Society

Subject

Physiology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carbon dioxide and MAPK signalling: towards therapy for inflammation;Cell Communication and Signaling;2023-10-10

2. Myristoylated alanine-rich C kinase substrate-like protein-1 regulates epithelial sodium channel activity in renal distal convoluted tubule cells;American Journal of Physiology-Cell Physiology;2020-09-01

3. Epithelial Sodium Channels (ENaC);Studies of Epithelial Transporters and Ion Channels;2020

4. Physiological regulation of the epithelial Na+ channel by casein kinase II;American Journal of Physiology-Renal Physiology;2018-03-01

5. Cytokine–Ion Channel Interactions in Pulmonary Inflammation;Frontiers in Immunology;2018-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3