Inhibition of ROMK channels by low extracellular K+ and oxidative stress

Author:

Frindt Gustavo1,Li Hui2,Sackin Henry2,Palmer Lawrence G.1

Affiliation:

1. Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York; and

2. Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois

Abstract

We tested the hypothesis that low luminal K+ inhibits the activity of ROMK channels in the rat cortical collecting duct. Whole-cell voltage-clamp measurements of the component of outward K+ current inhibited by the bee toxin Tertiapin-Q ( ISK) showed that reducing the bath concentration ([K+]o) to 1 mM resulted in a decline of current over 2 min compared with that observed at 10 mM [K+]o. However, maintaining tubules in 1 mM [K+]o without establishing whole-cell clamp conditions did not affect ISK. The [K+]o-dependent decline was not prevented by increasing cytoplasmic-side pH or by inhibition of phosphatase activity. It was, however, abolished by the inclusion of 0.5 mM DTT in the pipette solution to prevent oxidation of the intracellular environment. Conversely, treatment of intact tubules with the oxidant H2O2 (100 μM) decreased ISK in a [K+]o-dependent manner. Treatment of the tubules with the phospholipase C inhibitor U73122 prevented the effect of low [K+]o, suggesting the involvement of this enzyme in the process. We examined these effects further using Xenopus oocytes expressing ROMK2 channels. A 50-min exposure to the permeant oxidizing agent tert-butyl hydroperoxide (t-BHP; 500 μM) did not affect outward K+ currents with [K+]o = 10 mM but reduced currents by 50% with [K+]o = 1 mM and by 75% with [K+]o = 0.1 mM. Pretreatment of the oocytes with U73122 prevented the effects of t-BHP. Under conditions of low dietary K intake, K+ secretion by distal nephron segments may be suppressed by a combination of low luminal [K+]o and oxidative stress.

Publisher

American Physiological Society

Subject

Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3