Single nucleotide polymorphisms in the human Na+-dicarboxylate cotransporter affect transport activity and protein expression

Author:

Pajor Ana M.1,Sun Nina N.1

Affiliation:

1. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, California

Abstract

The sodium-coupled transport of citric acid cycle intermediates in the intestine and kidney is mediated by the Na+-dicarboxylate cotransporter, NaDC1. In the kidney, NaDC1 plays an important role in regulating succinate and citrate concentrations in the urine, which may have physiological consequences including the development of kidney stones. In the present study, the impact of nonsynonymous single nucleotide polymorphisms (SNPs) on NaDC1 expression and function was characterized using the COS-7 cell heterologous expression system. The I550V variant had an increased sensitivity to lithium inhibition although there were no significant effects on protein abundance. The L44F variant had no significant effects on expression or function. The membrane protein abundance of the M45L, V117I, and F254L variants was decreased, with corresponding decreases in transport activity. The A310P variant had decreased protein abundance as well as a change in substrate selectivity. The P385S variant had a large decrease in succinate transport Vmax, as well as altered substrate selectivity, and a change in the protein glycosylation pattern. The most damaging variant was V477M, which had decreased affinity for both succinate and sodium. The V477M variant also exhibited stimulation by lithium, indicating a change in the high-affinity cation binding site. We conclude that most of the naturally occurring nonsynonymous SNPs affect protein processing of NaDC1, and several also affect functional properties. All of these mutations are predicted to decrease transport activity in vivo, which would result in decreased intestinal and renal absorption of citric acid cycle intermediates.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3