Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles

Author:

Liu Z. Z.1,Mathia S.2,Pahlitzsch T.1,Wennysia I. C.1,Persson P. B.1,Lai E. Y.3,Högner A.1,Xu M. Z.1,Schubert R.4,Rosenberger C.2,Patzak A.1

Affiliation:

1. Institute of Vegetative Physiology, Berlin, Germany;

2. Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany;

3. Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China; and

4. Medical Faculty Mannheim, Research Division Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany

Abstract

Vasoconstriction plays an important role in the development of acute kidney injury in rhabdomyolysis. We hypothesized that myoglobin enhances the angiotensin II (ANG II) response in afferent arterioles by increasing superoxide and reducing nitric oxide (NO) bioavailability. Afferent arterioles of C57Bl6 mice were isolated perfused, and vasoreactivity was analyzed using video microscopy. NO bioavailability, superoxide concentration in the vessel wall, and changes in cytosolic calcium were measured using fluorescence techniques. Myoglobin treatment (10−5 M) did not change the basal arteriolar diameter during a 20-min period compared with control conditions. NG-nitro-l-arginine methyl ester (l-NAME, 10−4 M) and l-NAME + myoglobin reduced diameters to 94.7 and 97.9% of the initial diameter, respectively. Myoglobin or l-NAME enhanced the ANG II-induced constriction of arterioles compared with control (36.6 and 34.2%, respectively, vs. 65.9%). Norepinephrine responses were not influenced by myoglobin. Combined application of myoglobin and l-NAME further facilitated the ANG II response (7.0%). Myoglobin or l-NAME decreased the NO-related fluorescence in arterioles similarly. Myoglobin enhanced the superoxide-related fluorescence, and tempol prevented this enhancement. Tempol also partly prevented the myoglobin effect on the ANG II response. Myoglobin increased the fura 2 fluorescence ratio (cytosolic calcium) during ANG II application (10−12 to 10−6 M). The results suggest that the enhanced afferent arteriolar reactivity to ANG II is mainly due to a myoglobin-induced increase in superoxide and associated reduction in the NO bioavailability. Signaling pathways for the augmented ANG II response include enhanced cytosolic calcium transients. In conclusion, myoglobin may contribute to the afferent arteriolar vasoconstriction in this rhabdomyolysis model.

Funder

German research foundation

German Reserch Foundation

German Research Foundation

Publisher

American Physiological Society

Subject

Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3