Acute growth hormone administration induces antidiuretic and antinatriuretic effects and increases phosphorylation of NKCC2

Author:

Dimke Henrik,Flyvbjerg Allan,Bourgeois Soline,Thomsen Klaus,Frøkiær Jørgen,Houillier Pascal,Nielsen Søren,Frische Sebastian

Abstract

Growth hormone (GH) has antidiuretic and antinatriuretic effects in rats and humans, but the molecular mechanisms responsible for these effects are unknown. The aim of this study was to investigate the mechanisms behind the acute renal effects of GH in rats. Female rats received rat (r)GH (2.8 mg/kg sc) or saline and were placed in metabolic cages for 5 h. Urinary excretion of electrolytes and urinary volume were reduced after rGH injection, while urine osmolality was increased. Creatinine and lithium clearance remained unchanged, suggesting that rGH increases reabsorption in segments distal to the proximal tubule. Total plasma insulin-like growth factor I (IGF-I) levels did not change, while cortical IGF-I mRNA abundance was increased. The relative abundance of total and Ser256-phosphorylated aquaporin 2 was found to be unchanged by immunoblotting, whereas a significant increase of Thr96 and Thr101-phosphorylated NKCC2 (renal Na+, K+, 2Cl cotransporter) was found in the inner stripe of outer medulla thick ascending limbs (mTAL). Additionally, an increased NKCC2 expression was observed in the cortical region. Immunohistochemistry confirmed these findings. The density of NKCC2 molecules in the apical membrane of mTAL cells appeared to be unchanged after rGH injection evaluated by immunoelectron microscopy. Basolateral addition of rGH or IGF-I to microperfused rat mTAL segments did not change transepithelial voltage. In conclusion, GH appears to exert its acute antinatriuretic and antidiuretic effects through indirect activation of NKCC2 in the mTAL.

Publisher

American Physiological Society

Subject

Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3