Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes

Author:

Foster Rebecca R.1,Hole Rachel2,Anderson Karen3,Satchell Simon C.3,Coward Richard J.4,Mathieson Peter W.3,Gillatt David A.5,Saleem Moin A.4,Bates David O.1,Harper Steven J.13

Affiliation:

1. Microvascular Research Laboratories, Department of Physiology, University of Bristol, Preclinical Veterinary School, Bristol BS2 8EJ; and

2. Department of Pathology,

3. Academic and

4. Children's Renal Unit, University of Bristol, and

5. Bristol Urological Institute, Southmead Hospital, Westbury on Trym, Bristol BS10 5NB, United Kingdom

Abstract

Vascular endothelial growth factor (VEGF) is expressed by renal glomerular epithelial cells (podocytes) and is thought to be protective against nephrotoxic agents. VEGF has been shown to be an autocrine survival factor in neuropilin-1-positive, VEGF receptor-negative breast carcinoma cells. Normal human podocytes are also known to express neuropilin-1, VEGF, and are VEGF-R2 negative. Here, we investigated whether a similar VEGF autocrine loop may exist in podocytes. Podocyte cytosolic calcium concentration ([Ca2+]i) was analyzed in primary cultured and conditionally immortalized podocytes using ratiometric fluorescence measurement. Cytotoxicity was determined by lactate dehydrogenase assay, proliferation by [3H]-thymidine incorporation, and cell counts by hemocytometric assay. VEGF decreased [Ca2+]i in primary podocytes (from 179 ± 36 to 121 ± 25 nM, P < 0.05) and conditionally immortalized podocytes (from 95 ± 10 to 66 ± 8 nM, P < 0.02) in the absence of extracellular calcium. The type III receptor tyrosine-kinase inhibitor PTK787/ZK222584 abolished this reduction. VEGF increased podocyte [3H]-thymidine incorporation (3,349 ± 283 cpm, control 2,364 ± 301 cpm, P < 0.05) and cell number (4.5 ± 0.7 × 104/ml, control 2.6 ± 0.5 × 104/ml, P < 0.05) and decreased cytotoxicity (5.9 ± 0.7%, control 12 ± 3%, P < 0.05), whereas a monoclonal antibody to VEGF increased cytotoxicity. Electron microscopy of normal human glomeruli demonstrated that the glomerular VEGF is mostly podocyte cell membrane associated. These results indicate that one of the functions of VEGF secreted from podocytes may be to act as an autocrine factor on calcium homeostasis and cell survival.

Publisher

American Physiological Society

Subject

Physiology

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3