Affiliation:
1. Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06510.
Abstract
The effect of arginine vasopressin (AVP) on the low-conductance K+ channel in the apical membrane of rat cortical collecting duct (CCD) principal cells from animals on a control and high-K+ diet was studied using patch-clamp techniques. AVP stimulated apical low-conductance K+ channel activity in both control and high-K+ animals: application of 110-220 pM AVP induced a significant increase in the density of low-conductance K+ channels. In the presence of phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine), administration of 22 pM AVP also increased channel activity. The action of AVP on low-conductance K+ channel activity was mimicked by simultaneous application of forskolin and 3-isobutyl-1-methylxanthine. Exogenously applied N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dibutyryl-cAMP, 0.4-0.8 mM) also increased apical low-conductance K+ channel activity. Since channel open probability (Po) was almost saturated in the absence of AVP, the increase of channel activity induced by AVP, forskolin, and dibutyryl-cAMP resulted predominantly from stimulating previously silent K+ channels. We conclude that AVP induces an increase of low-conductance K+ channel activity of principal cells in rat CCD by the stimulation of cAMP-dependent protein kinase. The AVP-induced increase of low-conductance K+ channel activity can thus significantly contribute to the hormone-induced K+ secretion in the rat CCD.
Publisher
American Physiological Society
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献