PTH-sensitive K(+)- and voltage-dependent Pi transport by chick renal brush-border membranes

Author:

Barber L. E.1,Coric V.1,Clark N. B.1,Renfro J. L.1

Affiliation:

1. Department of Physiology and Neurobiology, University of Connecticut,Storrs 06269-3042.

Abstract

Brush-border membrane vesicles (BBMV) from chick (Gallus gallus) kidneys were used to examine possible pathways of Pi transport associated with Pi secretion. Preloading with 6 mM Pi trans-stimulated 32Pi uptake in the absence of Na+, indicating facilitation. Inside-positive voltage (100 mM K+, out > in, +valinomycin) increased Pi uptake from 161 +/- 4.4 to 241 +/- 16.1 pmol.mg protein-1.5s-1 at pH 7.5 (in = out). Gradients characterized by extravesicular pH (pHo) of 5.5 vs. intravesicular pH (pHi) of 7.5, 100 mM K+ (out > in), without and with valinomycin, further increased uptake to 664 +/- 148.5 and 946 +/- 90.8 pmol.mg protein-1.5s-1, respectively. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) had no effect on the latter response, but with 100 mM K+ (in = out), valinomycin decreased the response more than one-half, implicating a H+ diffusion potential. Generation of this potential with pHo 5.5 vs. pHi 7.5 and CCCP did not drive concentrative Pi uptake in absence of K+. Parathyroid hormone (PTH) treatment significantly increased this BBMV K(+)- and voltage-dependent Pi up-take compared with the parathyroidectomized (PTX) condition. The values of maximal uptake rate (Vmax) in PTH vs. PTX BBMV were 5,330 and 1,976 pmol.mg protein-1.5s-1, respectively. K(+)-dependent transport was inhibited by arsenate, phosphonoacetic acid, and vanadate. Together, the data indicate that this PTH-sensitive, voltage- and K(+)-dependent monovalent Pi transporter could be the mechanism by which Pi exits, cell-to-lumen, during renal tubular Pi secretion.

Publisher

American Physiological Society

Subject

Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transport of Inorganic Ions by Renal Tubules;Comparative Physiology of the Vertebrate Kidney;2016

2. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility;Journal of Applied Poultry Research;2013-10

3. PTH stimulates a Cl−-dependent and EIPA-sensitive current in chick proximal tubule cells in culture;American Journal of Physiology-Renal Physiology;2003-05-01

4. Regulation of transepithelial phosphate transport by PTH in chicken proximal tubule epithelium;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2002-01-01

5. Recent developments in teleost renal transport;Journal of Experimental Zoology;1999-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3