Enhanced ammonia secretion by proximal tubules from mice receiving NH4Cl: role of angiotensin II

Author:

Nagami Glenn T.1,

Affiliation:

1. Nephrology Section, Medical and Research Services, Veterans Affairs Greater Los Angeles Healthcare System at West Los Angeles, Los Angeles 90073; and School of Medicine, University of California, Los Angeles, California 90095

Abstract

Acidosis and angiotensin II (ANG II) stimulate ammonia production and transport by the proximal tubule. We examined the effect of short-term (18 h) in vivo acid loading with NH4Cl on ammonia production and secretion rates by mouse S2 proximal tubule segments microperfused in vitro with or without ANG II in the luminal microperfusion solution. S2 tubules from NH4Cl-treated mice displayed higher rates of luminal ammonia secretion compared with those from control mice. The adaptive increase in ammonia secretion in NH4Cl-treated mice was eliminated when losartan was coadministered in vivo with NH4Cl. Ammonia secretion rates from both NH4Cl-treated and control mice were largely inhibited by amiloride. Addition of ANG II to the microperfusion solution enhanced ammonia secretion and production rates to a greater extent in tubules from NH4Cl-treated mice compared with those from controls, and the stimulatory effects of ANG II were blocked by losartan. These results demonstrate that a short-term acid challenge induces an adaptive increase in ammonia secretion by the proximal tubule and suggest that ANG II plays an important role in the adaptive enhancement of ammonia secretion that is observed with short-term acid challenges.

Publisher

American Physiological Society

Subject

Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pathophysiology and genetics of salt-sensitive hypertension;Frontiers in Physiology;2022-09-13

2. Regulation of Acid-Base Balance in Patients With Chronic Kidney Disease;Advances in Chronic Kidney Disease;2022-07

3. A mathematical model of the rat kidney. III. Ammonia transport;American Journal of Physiology-Renal Physiology;2021-06-01

4. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms;American Journal of Physiology-Renal Physiology;2020-11-01

5. Pathophysiology of Hepatic Encephalopathy;Clinics in Liver Disease;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3