LPA is a novel lipid regulator of mesangial cell hexokinase activity and HKII isoform expression

Author:

Coy Platina E.12,Taneja Navin12,Lee Iris12,Hecquet Claudie3,Bryson Jane M.12,Robey R. Brooks142

Affiliation:

1. Section of Nephrology, Department of Medicine, Departments of

2. Veterans Affairs Chicago Health Care System, West Side Division, Chicago, Illinois 60612-7315

3. Pharmacology and

4. Physiology and Biophysics, University of Illinois at Chicago College of Medicine, and

Abstract

The prototypical extracellular phospholipid mediator, lysophosphatidic acid (LPA), exhibits growth factor-like properties and represents an important survival factor in serum. This potent mesangial cell mitogen is increased in conditions associated with glomerular injury. It is also a known activator of the classic mitogen-activated protein kinase (MAPK) pathway, which plays an important role in the regulation of mesangial cell hexokinase (HK) activity. To better understand the mechanisms coupling metabolism to injury, we examined the ability of LPA to regulate HK activity and expression in cultured murine mesangial cells. LPA increased total HK activity in a concentration- and time-dependent manner, with maximal increases of >50% observed within 12 h of exposure to LPA concentrations ≥25 μM (apparent ED50 2 μM). These effects were associated with increased extracellular signal-regulated kinase (ERK) activity and were prevented by the pharmacological inhibition of either MAPK/ERK kinase or protein kinase C (PKC). Increased HK activity was also associated with increased glucose (Glc) utilization and lactate accumulation, as well as selectively increased HKII isoform abundance. The ability of exogenous LPA to increase HK activity was both Ca2+independent and pertussis toxin insensitive and was mimicked by LPA-generating phospholipase A2. We conclude that LPA constitutes a novel lipid regulator of mesangial cell HK activity and Glc metabolism. This regulation requires sequential activation of both Ca2+-independent PKC and the classic MAPK pathway and culminates in increased HKII abundance. These previously unrecognized metabolic consequences of LPA stimulation have both physiological and pathophysiological implications. They also suggest a novel mechanism whereby metabolism may be coupled to cellular injury via extracellular lipid mediators.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3