Adaptive responses of rat descending vasa recta to ischemia

Author:

Zhang Zhong1,Payne Kristie1,Pallone Thomas L.12

Affiliation:

1. Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland

2. Baltimore Veterans Administration Medical Center, Baltimore, Maryland

Abstract

tested whether rat descending vasa recta (DVR) undergo regulatory adaptations after the kidney is exposed to ischemia. Left kidneys (LK) were subjected to 30-min renal artery cross clamp. After 48 h, the postischemic LK and contralateral right kidney (RK) were harvested for study. When compared with DVR isolated from either sham-operated LK or the contralateral RK, postischemic LK DVR markedly increased their NO generation. The selective inducible NOS (iNOS) inhibitor 1400W blocked the NO response. Immunoblots from outer medullary homogenates showed a parallel 2.6-fold increase in iNOS expression ( P = 0.01). Microperfused postischemic LK DVR exposed to angiotensin II (ANG II, 10 nM), constricted less than those from the contralateral RK, and constricted more when exposed to 1400W (10 µM). Resting membrane potentials of pericytes from postischemic LK DVR pericytes were hyperpolarized relative to contralateral RK pericytes (62.0 ± 1.6 vs. 51.8 ± 2.2 mV, respectively, P < 0.05) or those from sham-operated LK (54.9 ± 2.1 mV, P < 0.05). Blockade of NO generation with 1400W did not repolarize postischemic pericytes (62.5 ± 1.4 vs. 61.1 ± 3.4 mV); however, control pericytes were hyperpolarized by exposure to NO donation from S-nitroso- N-acetyl- dl-penicillamine (51.5 ± 2.9 to 62.1 ± 1.4 mV, P < 0.05). We conclude that postischemic adaptations intrinsic to the DVR wall occur after ischemia. A rise in 1400W sensitive NO generation and iNOS expression occurs that is associated with diminished contractile responses to ANG II. Pericyte hyperpolarization occurs that is not explained by the rise in ambient NO generation within the DVR wall.

Funder

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3