Adenosine A2Areceptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase

Author:

Carlström Mattias1,Wilcox Christopher S.1,Welch William J.1

Affiliation:

1. Division of Nephrology & Hypertension, and Hypertension, Kidney & Vascular Research Center, Georgetown University, Washington, District of Columbia

Abstract

Adenosine A2receptors have been suggested to modulate tubuloglomerular feedback (TGF) responses by counteracting adenosine A1receptor-mediated vasoconstriction, but the mechanisms are unclear. We tested the hypothesis that A2Areceptor activation blunts TGF by release of nitric oxide in the juxtaglomerular apparatus (JGA). Maximal TGF responses were measured in male Sprague-Dawley rats as changes in proximal stop-flow pressure (ΔPSF) in response to increased perfusion of the loop of Henle (0 to 40 nl/min) with artificial tubular fluid (ATF). The maximal TGF response was studied after 5 min intratubular perfusion (10 nl/min) with ATF or ATF + A2Areceptor agonist (CGS-21680; 10−7mol/l). The interaction with nitric oxide synthase (NOS) isoforms was tested by perfusion with a nonselective NOS inhibitor [ Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME); 10−3mol/l] or a selective neuronal NOS (nNOS) inhibitor [ Nω-propyl-l-arginine (l-NPA); 10−6mol/l] alone, and with the A2Aagonist. Blood pressure, urine flow, and PSFat 0 nl/min were similar among the groups. The maximal TGF response (ΔPSF) with ATF alone (12.3 ± 0.6 mmHg) was attenuated by selective A2Astimulation (9.5 ± 0.4 mmHg). l-NAME enhanced maximal TGF responses (18.9 ± 0.4 mmHg) significantly more than l-NPA (15.2 ± 0.7 mmHg). Stimulation of A2Areceptors did not influence maximal TGF response during nonselective NOS inhibition (19.0 ± 0.4) but attenuated responses during nNOS inhibition (10.3 ± 0.4 mmHg). In conclusion, adenosine A2Areceptor activation attenuated TGF responses by stimulation of endothelial NOS (eNOS), presumably in the afferent arteriole. Moreover, NO derived from both eNOS and nNOS in the JGA may blunt TGF responses.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3