Selective renal overexpression of human heat shock protein 27 reduces renal ischemia-reperfusion injury in mice

Author:

Kim Minjae1,Park Sang Won1,Kim Mihwa1,Chen Sean W. C.1,Gerthoffer William T.2,D'Agati Vivette D.3,Lee H. Thomas1

Affiliation:

1. Departments of 1Anesthesiology and

2. Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama

3. Pathology, College of Physicians and Surgeons of Columbia University, New York, New York; and

Abstract

We have previously shown that exogenous and endogenous A1adenosine receptor (A1AR) activation protected against renal ischemia-reperfusion (IR) injury in mice by induction and phosphorylation of heat shock protein 27 (HSP27). With global overexpression of HSP27 in mice, however, there was a paradoxical increase in systemic inflammation with increased renal injury after an ischemic insult due to increased NK1.1 cytotoxicity. In this study, we hypothesized that selective renal expression of HSP27 in mice would improve renal function and reduce injury after IR. Mice were subjected to renal IR injury 2 days after intrarenal injection of saline or a lentiviral construct encoding enhanced green fluorescent protein (EGFP) or human HSP27 coexpressing EGFP (EGFP-huHSP27). Mice with kidney-specific reconstitution of huHSP27 had significantly lower plasma creatinine, renal necrosis, apoptosis, and inflammation as demonstrated by decreased proinflammatory cytokine mRNA induction and neutrophil infiltration. In addition, there was better preservation of the proximal tubule epithelial filamentous (F)-actin cytoskeleton in the huHSP27-reconstituted groups than in the control groups. Furthermore, huHSP27 overexpression led to increased colocalization with F-actin in renal proximal tubules. Taken together, these findings have important clinical implications, as they imply that kidney-specific expression of HSP27 through lentiviral delivery is a viable therapeutic option in attenuating the effects of renal IR.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3