Effect of chronic metabolic acidosis on bone density and bone architecture in vivo in rats

Author:

Gasser Jürg A.1,Hulter Henry N.2,Imboden Peter1,Krapf Reto3

Affiliation:

1. Novartis Institute for BioMedical Research, Department of Musculoskeletal Diseases, Basel, Switzerland;

2. Department of Medicine, University of California, San Francisco, California; and

3. University Department of Medicine, Kantonsspital Bruderholz, Basel, Switzerland and Klinik St. Anna Hirslanden, Lucerne, Switzerland

Abstract

Chronic metabolic acidosis (CMA) might result in a decrease in vivo in bone mass based on its reported in vitro inhibition of bone mineralization, bone formation, or stimulation of bone resorption, but such data, in the absence of other disorders, have not been reported. CMA also results in negative nitrogen balance, which might decrease skeletal muscle mass. This study analyzed the net in vivo effects of CMA's cellular and physicochemical processes on bone turnover, trabecular and cortical bone density, and bone microarchitecture using both peripheral quantitative computed tomography and μCT. CMA induced by NH4Cl administration (15 mEq/kg body wt/day) in intact and ovariectomized (OVX) rats resulted in stable CMA (mean Δ[HCO3]p = 10 mmol/l). CMA decreased plasma osteocalcin and increased TRAP5b in intact and OVX animals. CMA decreased total volumetric bone mineral density (vBMD) after 6 and 10 wk ( week 10: intact normal +2.1 ± 0.9% vs. intact acidosis −3.6 ± 1.2%, P < 0.001), an effect attributable to a decrease in cortical thickness and, thus, cortical bone mass (no significant effect on cancellous vBMD, week 10) attributed to an increase in endosteal bone resorption (nominally increased endosteal circumference). Trabecular bone volume (BV/TV) decreased significantly in both CMA groups at 6 and 10 wk, associated with a decrease in trabecular number. CMA significantly decreased muscle cross-sectional area in the proximal hindlimb at 6 and 10 wk. In conclusion, chronic metabolic acidosis induces a large decrease in cortical bone mass (a prime determinant of bone fragility) in intact and OVX rats and impairs bone microarchitecture characterized by a decrease in trabecular number.

Publisher

American Physiological Society

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3