Genetic AVP deficiency abolishes cold-induced diuresis but does not attenuate cold-induced hypertension

Author:

Sun Zhongjie

Abstract

Chronic cold exposure causes hypertension and diuresis. The aim of this study was to determine whether vasopressin (AVP) plays a role in cold-induced hypertension and diuresis. Two groups of Long-Evans (LE) and two groups of homozygous AVP-deficient Brattleboro (VD) rats were used. Blood pressure (BP) was not different among the four groups during a 2-wk control period at room temperature (25°C, warm). After the control period, one LE group and one VD group were exposed to cold (5°C); the remaining groups were kept at room temperature. BP and body weight were measured weekly during exposure to cold. Food intake, water intake, urine output, and urine osmolality were measured during weeks 1, 3, and 5 of cold exposure. At the end of week 5, all animals were killed and blood was collected for measurement of plasma AVP. Kidneys were removed for measurement of renal medulla V2receptor mRNA and aquaporin-2 (AQP-2) protein expression. BP of LE and VD rats increased significantly by week 2 of cold exposure and reached a high level by week 5. BP elevations developed at approximately the same rate and to the same degree in LE and VD rats. AVP deficiency significantly increased urine output and solute-free water clearance and decreased urine osmolality. Chronic cold exposure increased urine output and solute-free water clearance and decreased urine osmolality in LE rats, indicating that cold exposure caused diuresis in LE rats. Cold exposure failed to affect these parameters in VD rats, suggesting that the AVP system is responsible for cold-induced diuresis. Cold exposure did not alter plasma AVP in LE rats. Renal medulla V2receptor mRNA and AQP-2 protein expression levels were decreased significantly in the cold-exposed LE rats, suggesting that cold exposure inhibited renal V2receptors and AVP-inducible AQP-2 water channels. We conclude that 1) AVP may not be involved in the pathogenesis of cold-induced hypertension, 2) the AVP system plays a critical role in cold-induced diuresis, and 3) cold-induced diuresis is due to suppression of renal V2receptors and the associated AQP-2 water channels, rather than inhibition of AVP release.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3