Effect of acute hypercapnia on PTH-stimulated phosphaturia in dietary Pi-deprived rat

Author:

Guntupalli J.,Matthews B.,Carlin B.,Bourke E.

Abstract

The effects of respiratory acidosis on renal inorganic phosphate (Pi) handling are controversial. Clearance experiments, therefore, were performed in fasted, chronically parathyroidectomized (PTX), dietary Pi-deprived rats. The objectives were twofold: to study the effects of compensated and uncompensated hypercapnia per se on renal Pi excretion and to examine the interaction between acute hypercapnia, dietary Pi, and parathyroid hormone (PTH) on the renal handling of Pi. Acute hypercapnia increased the plasma Pi (delta 2.82 +/- 0.65 mg/dl, P less than 0.05) without altering the glomerular filtration rate (GFR). The FEPi increased (delta 7.26 +/- 0.48%, P less than 0.001) but the TRPi/GFR also increased. PTH (3 U X kg-1 X h-1) superimposed on hypercapnia resulted in a plasma Pi comparable to hypercapnia alone. The FEPi (7.56 +/- 0.78 vs. 24.43 +/- 2.20%; P less than 0.001) was higher and the TRPi/GFR (117 +/- 4 vs. 80 +/- 2 micrograms/min, P less than 0.01) lower, in the former group. PTH infusion during normocapnia resulted in a lower FEPi (0.20 +/- 0.10 vs. 24.43 +/- 2.20%, P less than 0.001) and a higher TRPi/GFR (106 +/- 2 vs. 80 +/- 2 micrograms/min, P less than 0.01) compared with PTH infusion during hypercapnia. Urinary adenosine 3',5'-cyclic monophosphate (cAMP) excretion was similar between the groups. During hypercapnia, when the extracellular acidemia was neutralized, the phosphaturic action of PTH persisted. These studies offer direct evidence that in chronically PTX, dietary Pi-deprived rats, the phosphaturic action of PTH is restored by hypercapnia per se. This effect appears to be independent of extracellular acidemia, changes in the plasma Pi and calcium, urinary pH and Na and cAMP excretion.

Publisher

American Physiological Society

Subject

Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3