Ultrastructural changes in isolated perfused proximal tubules during osmotic water flow

Author:

Maunsbach A. B.1,Tripathi S.1,Boulpaep E. L.1

Affiliation:

1. Department of Cell Biology, University of Aarhus, Denmark.

Abstract

Steady-state effects of osmotic gradients on extracellular spaces and cell volumes were studied by ultrastructural morphometry in isolated perfused Ambystoma proximal tubules. Solute clamping, high-resolution pressure and flow control of lumen and bath solutions were all ascertained before and during fixation. Isosmotic removal of organic substrates in the lumen reversibly abolished transport, as confirmed by transepithelial potential decrease from -4.7 +/- 0.5 to -0.5 +/- 0.2 mV (n = 8) but had no effect on ultrastructural parameters. The walls of the extracellular spaces are therefore not deformed by spontaneous solute-coupled water transport. A hyperosmolar lumen generated a streaming potential of -1.56 +/- 0.15 mV (n = 8), reduced cell volume to 65%, reduced lateral intercellular space (LIS) volume to 20%, and LIS volume density to 29% of control without significant effects on the volume of the basal extracellular labyrinth (BEL). A hyperosmolar bath generated a streaming potential of +1.96 +/- 0.30 mV (n = 7), reduced cell volume to 68%, and increased LIS volume density to 236% of control. BEL volume was 55% larger during lumen-to-bath flow than during bath-to-lumen flow. Because cell volume reduction is very similar for both directions of osmotic water flow, the oppositely directed volume changes in the extracellular spaces are secondary to transepithelial water flow. The greater change in volume of LIS compared with BEL indicates that the outermost parts of the LIS are more resistive to transepithelial water flow than the slitlike communications of the BEL with the peritubular space.

Publisher

American Physiological Society

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3