Alpha- and beta-adrenergic receptors in proximal tubules of rat kidney

Author:

Sundaresan P. R.1,Fortin T. L.1,Kelvie S. L.1

Affiliation:

1. Department of Pharmacology, University of Rochester Medical Center,New York 14642.

Abstract

Proximal tubules were isolated from the rat kidney by collagenase digestion of the cortical tissue followed by Percoll gradient centrifugation. Microscopic and hormone-stimulated adenylate cyclase activity studies proved the purity of the preparation. [3H]Prazosin, [3H]rauwolscine, and [125I]iodocyanopindolol were used to identify and quantitate respectively the alpha 1-, alpha 2- and beta-adrenergic receptors. Proximal tubular (F4) particulate fraction was compared against other cortical nephron segment (F1, F2) fractions and the total collagenase-digested cortex particulate suspension (Ft). Proximal tubules were enriched in alpha 1- and alpha 2-adrenergic receptors compared with Ft (alpha 1-receptor, 100.4 +/- 4.5 vs. 87.4 +/- 4.9; alpha 2-receptor, 250 +/- 16.2 vs. 185.1 +/- 12 fmol/mg protein). The fractions enriched in glomeruli and distal tubular segments (F1, F2) had relatively low concentrations of alpha 1- and alpha 2-adrenergic receptors. In contrast, beta-adrenergic receptor concentration in the proximal tubules was approximately 25% of that in the Ft fraction and approximately 10% of that in the F1 fraction. Isoproterenol-stimulated adenylate cyclase activities in the different fractions corroborated well with the pattern suggested by the [125I]iodocyanopindolol binding studies. Our results suggest that whole-cortex preparation radioligand binding studies may reflect proximal tubular alpha 1- and alpha 2-adrenergic receptor changes quite well. They may, however, miss or give erroneous impressions about beta-adrenergic receptor changes occurring in different cortical nephron segments.

Publisher

American Physiological Society

Subject

Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3