Mechanism of proton-induced bone calcium release: calcium carbonate-dissolution

Author:

Bushinsky D. A.1,Lechleider R. J.1

Affiliation:

1. Nephrology Program, Pritzker School of Medicine, University ofChicago, Illinois 60637.

Abstract

Protons are buffered and calcium is released by bone during metabolic acidosis. Incubation of neonatal mouse calvariae in acid medium causes net calcium efflux from bone and net proton influx into bone, just as metabolic acidosis does in vivo. To determine whether the calcium carbonate phase of bone mineral is solubilized with increasing proton concentrations, we cultured calvariae for 3 h in medium in which the saturation was varied by changing pH or calcium and phosphate concentrations. We determined the driving force for crystallization by calculating the Gibbs free energy of formation (DG). With alteration of the medium pH, calcium carbonate entry or loss from bone varied linearly with the initial DG for medium calcium carbonate (r = -0.745, n = 41, P less than 0.001) as it did with alteration of the medium calcium and phosphate (r = -0.665, n = 118, P less than 0.001). There was dissolution of calcium carbonate into medium that was unsaturated with respect to calcium carbonate, net flux ceased at saturation, and calcium carbonate entered bone from supersaturated medium, indicating that the medium is in equilibrium with the calcium carbonate phase of bone mineral. Neither the mineral phase brushite nor apatite was in equilibrium with the medium. These observations indicate that in vitro, acute proton-induced calcium efflux is due to dissolution of bone calcium carbonate.

Publisher

American Physiological Society

Subject

Physiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preclinical and Clinical Evidence of Effect of Acid on Bone Health;Advances in Chronic Kidney Disease;2022-07

2. Effects of acid on bone;Kidney International;2022-06

3. Patterns of renal osteodystrophy 1 year after kidney transplantation;Nephrology Dialysis Transplantation;2021-08-12

4. Dietary protein and bone health: towards a synthesised view;Proceedings of the Nutrition Society;2020-11-13

5. “Take My Bone Away?” Hypoxia and bone: A narrative review;Journal of Cellular Physiology;2020-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3