Roles and mechanisms of urinary buffer excretion

Author:

Hamm L. L.1,Simon E. E.1

Affiliation:

1. Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.

Abstract

Excretion of acid (or generation of bicarbonate) by the kidneys is necessary for acid-base homeostasis. Most of this acid is excreted in the form of ammonia and titratable acid, the latter representing the amount of acid required to titrate the urine buffers from the plasma pH to urine pH. The transport of ammonia in the kidney is now recognized to entail more than simple nonionic diffusion of NH3 and trapping of NH4+. NH4+ transport in the kidney probably occurs by passive diffusion and by transport on the Na+-H+ exchanger, the Na+-K+-2Cl- transporter and on Na+-K+-ATPase. NH3 diffusion is stimulated by an acid disequilibrium pH in various nephron segments. Also, diffusion equilibrium of NH3 in various regions of the kidney has now been disproved. These various mechanisms of ammonia transport are considered in terms of their possible changes with acid-base disturbances. Phosphate is the most predominant urine buffer; its urinary excretion increases with acidosis. The mechanisms probably involve a decrease in the preferentially transported species, HPO4(2-), and a direct effect of pH on proximal tubule apical phosphate transport. With chronic acidosis, changes in the activity of the apical Na+-phosphate transporter occur. These effects of systemic acid-base balance interact with parathyroid hormone and dietary phosphate status to alter phosphate reabsorption. Citrate transport in the kidney is analyzed because of its sensitivity to systemic pH and because of the possible influence on systemic acid-base status in certain circumstances. Alterations in citrate excretion with acid-base disturbances depend on changes in the concentration of the transported species, citrate2-, and on changes in renal metabolism.

Publisher

American Physiological Society

Subject

Physiology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3