Author:
Liu Wen,Morimoto Tetsuji,Woda Craig,Kleyman Thomas R.,Satlin Lisa M.
Abstract
Apical low-conductance SK and high-conductance Ca2+-activated BK channels are present in distal nephron, including the cortical collecting duct (CCD). Flow-stimulated net K secretion ( JK) in the CCD is 1) blocked by iberiotoxin, an inhibitor of BK but not SK channels, and 2) associated with an increase in [Ca2+]i, leading us to conclude that BK channels mediate flow-stimulated JK. To examine the Ca2+ dependence and sources of Ca2+ contributing to flow-stimulated JK, JK and net Na absorption ( JNa) were measured at slow (∼1) and fast (∼5 nl·min−1·mm−1) flow rates in rabbit CCDs microperfused in the absence of luminal Ca2+ or after pretreatment with BAPTA-AM to chelate intracellular Ca2+, 2-aminoethoxydiphenyl borate (2-APB), to inhibit the inositol 1,4,5-trisphosphate (IP3) receptor or thapsigargin to deplete internal stores. These treatments, which do not affect flow-stimulated JNa (Morimoto et al. Am J Physiol Renal Physiol 291: F663–F669, 2006), inhibited flow-stimulated JK. Increases in [Ca2+]i stimulate exocytosis. To test whether flow induces exocytic insertion of preformed BK channels into the apical membrane, CCDs were pretreated with 10 μM colchicine (COL) to disrupt microtubule function or 5 μg/ml brefeldin-A (BFA) to inhibit delivery of channels from the intracellular pool to the plasma membrane. Both agents inhibited flow-stimulated JK but not JNa (Morimoto et al. Am J Physiol Renal Physiol 291: F663–F669, 2006), although COL but not BFA also blocked the flow-induced [Ca2+]i transient. We thus speculate that BK channel-mediated, flow-stimulated JK requires an increase in [Ca2+]i due, in part, to luminal Ca2+ entry and ER Ca2+ release, microtubule integrity, and exocytic insertion of preformed channels into the apical membrane.
Publisher
American Physiological Society
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献