Affiliation:
1. Departments of Physiology and
2. Biochemistry, Chinese University of Hong Kong, Hong Kong, China
Abstract
First published August 9, 2001; 10.1152/ajprenal.00031.2001.—Cytosolic calcium oscillations may permit cells to respond to information provided by increases in intracellular Ca2+ concentration ([Ca2+]i ) while avoiding prolonged exposure to constantly elevated [Ca2+]i. In this study, we demonstrated that agonists could induce Ca2+oscillations in human bladder epithelial cells. Application of 10 μM acetylcholine or 200 nM bradykinin triggered an initial Ca2+ transient that was followed by periodic [Ca2+]i oscillations. The oscillations did not depend on extracellular Ca2+. 8-Bromoguanosine 3′,5′-cyclic monophosphate abolished acetylcholine- or bradykinin-induced oscillations. Elevation of cellular cGMP by dipyridamole, an inhibitor of cGMP-specific phosphodiesterase, also terminated the [Ca2+]i oscillations. The inhibitory effect of cGMP could be reversed by KT-5823, a highly specific inhibitor of protein kinase G (PKG), suggesting that the action of cGMP was mediated by PKG. Comparison of the effect of cGMP with that of xestospongin C, an inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor, revealed similarities between the action of cGMP and xestospongin C. Therefore, it is likely that cGMP and PKG may target a signal transduction step(s) linked to IP3 receptor-mediated Ca2+ release.
Publisher
American Physiological Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献