Author:
Krick Wolfgang,Schnedler Nina,Burckhardt Gerhard,Burckhardt Birgitta C.
Abstract
Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [35S]sulfate and [14C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [35S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with Kivalues of 2.7 ± 1.3 mM, 101.7 ± 9.7 μM, 53.8 ± 10.9 μM, and 63.5 ± 38.7 μM, respectively. Vice versa, [14C]oxalate uptake was inhibited by sulfate with a Kiof 85.9 ± 9.5 μM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate.
Publisher
American Physiological Society
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献