Circadian variation in renal blood flow and kidney function in healthy volunteers monitored with noninvasive magnetic resonance imaging

Author:

Eckerbom Per1,Hansell Peter2ORCID,Cox Eleanor3,Buchanan Charlotte3,Weis Jan4,Palm Fredrik2,Francis Susan3,Liss Per1

Affiliation:

1. Section of Radiology, Department of Surgical Sciences, University Hospital, Uppsala, Sweden

2. Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

3. Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom

4. Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden

Abstract

Circadian regulation of kidney function is involved in maintaining whole body homeostasis, and dysfunctional circadian rhythm can potentially be involved in disease development. Magnetic resonance imaging (MRI) provides reliable and reproducible repetitive estimates of kidney function noninvasively without the risk of adverse events associated with contrast agents and ionizing radiation. The purpose of this study was to estimate circadian variations in kidney function in healthy human subjects with MRI and to relate the findings to urinary excretions of electrolytes and markers of kidney function. Phase-contrast imaging, arterial spin labeling, and blood oxygen level-dependent transverse relaxation rate (R2*) mapping were used to assess total renal blood flow and regional perfusion as well as intrarenal oxygenation in eight female and eight male healthy volunteers every fourth hour during a 24-h period. Parallel with MRI scans, standard urinary and plasma parameters were quantified. Significant circadian variations of total renal blood flow were found over 24 h, with increasing flow from noon to midnight and decreasing flow during the night. In contrast, no circadian variation in intrarenal oxygenation was detected. Urinary excretions of electrolytes, osmotically active particles, creatinine, and urea all displayed circadian variations, peaking during the afternoon and evening hours. In conclusion, total renal blood flow and kidney function, as estimated from excretion of electrolytes and waste products, display profound circadian variations, whereas intrarenal oxygenation displays significantly less circadian variation.

Funder

Swedish diabetes foundation

Swedish children diabetes foundation

The Ernfors family foundation

The Selanders foundation

The Olga Jönsson foundation

Region Uppsala

Royal society international exchange programme award

Vetenskapsrådet

Publisher

American Physiological Society

Subject

Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3