Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport

Author:

Sackin H.,Boulpaep E. L.

Abstract

Techniques are presented for the isolation and perfusion of renal proximal tubules from the neotenic salamander Ambystoma tigrinum. Methods are described for a determination of normal values for fluid transport and electrophysiological parameters. Stable cellular microelectrode recordings are reported that constitute the first intracellular measurements in an isolated perfused tubule preparation. With identical solutions in lumen and bath, fluid reabsorption averaged 0.28 nl.min-1.mm-1, transepithelial potential difference averaged -4.5 mV, transepithelial resistance was 52.1 omega.cm2, and the transepithelial chloride-to-sodium transference number ratio was 3.4. The basolateral cell membrane potential difference averaged -59.6 mV, and the ratio of apical-to-basolateral cell membrane resistance was between 3.9 and 5. Viability of the isolated perfused salamander proximal tubule preparation is demonstrated by a detailed comparison of the present data with results of in vivo micropuncture experiments on both Necturus and intact Ambystoma kidneys. In addition to being an advantageous preparation for long-term intracellular recordings, the Ambystoma kidney is unique in that proximal tubules can be studied both in isolation and by conventional micropuncture.

Publisher

American Physiological Society

Subject

Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis;American Journal of Physiology-Cell Physiology;2022-09-01

2. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons;The Journal of Neuroscience;2017-09-08

3. Transport of Fluid by Renal Tubules;Comparative Physiology of the Vertebrate Kidney;2016

4. Transport of Inorganic Ions by Renal Tubules;Comparative Physiology of the Vertebrate Kidney;2016

5. Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins;American Journal of Physiology-Cell Physiology;2015-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3