Pathways for angiotensin-(1—7) metabolism in pulmonary and renal tissues

Author:

Allred Alicia J.1,Diz Debra I.1,Ferrario Carlos M.1,Chappell Mark C.1

Affiliation:

1. Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157

Abstract

Two of the primary sites of actions for angiotensin (ANG)-(1—7) are the vasculature and the kidney. Because little information exists concerning the metabolism of ANG-(1—7) in these tissues, we investigated the hydrolysis of the peptide in rat lung and renal brush-border membrane (BBM) preparations. Radiolabeled ANG-(1—7) was hydrolyzed primarily to ANG-(1—5) by pulmonary membranes. The ANG-converting enzyme (ACE) inhibitor lisinopril abolished the generation of ANG-(1—5), as well as that of smaller metabolites. Kinetic studies of the hydrolysis of ANG-(1—7) to ANG-(1—5) by somatic (pulmonary) and germinal (testes) forms of rat ACE yielded similar values, suggesting that the COOH-domain is responsible for the hydrolysis of ANG-(1—7). Pulmonary metabolism of ANG-(1—5) yielded ANG-(3—5) and was independent of ACE but may involve peptidyl or dipeptidyl aminopeptidases. In renal cortex BBM, ANG-(1—7) was rapidly hydrolyzed to mono- and dipeptide fragments and ANG-(1—4). Aminopeptidase (AP) inhibition attenuated the hydrolysis of ANG-(1—7) and increased ANG-(1—4) formation. Combined treatment with AP and neprilysin (Nep) inhibitors abolished ANG-(1—4) formation and preserved ANG-(1—7). ACE inhibition had no effect on the rate of hydrolysis or the metabolites formed in the BBM. In conclusion, ACE was the major enzymatic activity responsible for the metabolism of ANG-(1—7) in the lung, which is consistent with the ability of ACE inhibitors to increase the half-life of circulating ANG-(1—7) and raise endogenous levels of the peptide. An alternate pathway of metabolism was revealed in the renal cortex, where increased AP and Nep activities, relative to ACE activity, promote conversion of ANG-(1—7) to ANG-(1—4) and smaller fragments.

Publisher

American Physiological Society

Subject

Physiology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3