Differential localization of human nongastric H+-K+-ATPase ATP1AL1 in polarized renal epithelial cells

Author:

Reinhardt Jürgen1,Grishin Alexander V.2,Oberleithner Hans1,Caplan Michael J.2

Affiliation:

1. Department of Physiology, University of Münster, 48149 Münster, Germany; and

2. Department of Cellular and Molecular Physiology, Yale University, School of Medicine, New Haven, Connecticut 06520

Abstract

The human H+-K+-ATPase, ATP1AL1, belongs to the subgroup of nongastric, K+-transporting ATPases. In concert with the structurally related gastric H+-K+-ATPase, it plays a major role in K+ reabsorption in various tissues, including colon and kidney. Physiological and immunocytochemical data suggest that the functional heteromeric ion pumps are usually found in the apical plasma membranes of renal epithelial cells. However, the low expression levels of characteristic nongastric ion pumps makes it difficult to verify their spatial distribution in vivo. To investigate the sorting behavior of ATP1AL1, we expressed this pump by stable transfection in MDCK and LLC-PK1 renal epithelial cell lines. Stable interaction of ATP1AL1 with either the endogenous Na+-K+-ATPase β-subunit or the gastric H+-K+-ATPase β-subunit was tested by confocal immunofluorescence microscopy and surface biotinylation. In cells transfected with ATP1AL1 alone, the α-subunit accumulated intracellularly, consistent with its inability to assemble and travel to the plasma membrane with the endogenous Na+-K+-ATPase β-subunit. Cotransfection of ATP1AL1 with the gastric H+-K+-ATPase β-subunit resulted in plasma membrane localization of both pump subunits. In cotransfected MDCK cells the heteromeric ion pump was predominantly polarized to the apical plasma membrane. Functional expression of ATP1AL1 was confirmed by 86Rb+uptake measurements. In contrast, cotransfected LLC-PK1cells accumulate ATP1AL1 at the lateral membrane. The distinct polarization of ATP1AL1 indicates that the α-subunit encodes sorting information that is differently interpreted by cell type-specific sorting mechanisms.

Publisher

American Physiological Society

Subject

Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Non-Gastric H+/K+ ATPase (ATP12A) Is Expressed in Mammalian Spermatozoa;International Journal of Molecular Sciences;2022-01-19

2. H,K-ATPases in Epithelia;Studies of Epithelial Transporters and Ion Channels;2020

3. Increased expression of ATP12A proton pump in cystic fibrosis airways;JCI Insight;2018-10-18

4. Proton Pump Inhibitors Inhibit Pancreatic Secretion: Role of Gastric and Non-Gastric H+/K+-ATPases;PLOS ONE;2015-05-18

5. H-K-ATPase type 2: relevance for renal physiology and beyond;American Journal of Physiology-Renal Physiology;2014-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3