5-HT2A receptors stimulate mitogen-activated protein kinase via H2O2 generation in rat renal mesangial cells

Author:

Greene Eddie L.1,Houghton Odette1,Collinsworth Georgiann1,Garnovskaya Maria N.1,Nagai Toshio1,Sajjad Tahir1,Bheemanathini Venugopala1,Grewal Jasjit S.1,Paul Richard V.1,Raymond John R.1

Affiliation:

1. Nephrology Division, Department of Internal Medicine, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425

Abstract

Serotonin (5-HT) stimulates mitogenesis in rat renal mesangial cells through a G protein-coupled 5-HT2A receptor. We tested the hypothesis that oxidants might be involved in the signal transduction pathway linking the receptor to extracellular signal-regulated protein kinase (ERK). 5-HT rapidly increased the activity and phosphorylation of ERK. These effects were blocked by the 5-HT2A receptor antagonist ketanserin. The peak effect was noted at 5–10 min, and half-maximal stimulation was achieved at 10–30 nM 5-HT. Chemical inhibitor and activator studies supported the involvement of phospholipase C, protein kinase C (PKC), and reactive oxygen species (ROS, i.e., H2O2 and superoxide) generated by an NAD(P)H oxidase-like enzyme in the ERK activation cascade. Mapping studies supported a location for the NAD(P)H oxidase enzyme and the ROS downstream from PKC. Our studies are most consistent with an ERK activation pathway as follows: 5-HT2A receptor → Gq protein → phospholipase C → diacylglycerol → classical PKC → NAD(P)H oxidase → superoxide → superoxide dismutase → H2O2 → mitogen-activated extracellular signal-regulated kinase → ERK. These studies demonstrate a role for the 5-HT2A receptor in rapid, potent, and efficacious activation of ERK in rat renal mesangial cells. They support a role for oxidants in conveying the stimulatory signal from 5-HT, because 1) chemical antioxidants attenuate the 5-HT signal, 2) oxidants and 5-HT selectively activate ERK to a similar degree, 3) 5-HT produces superoxide and H2O2 in these cells, and 4) a specific enzyme [NAD(P)H oxidase] has been implicated as the source of the ROS, which react selectively downstream of classical PKC.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3