Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney

Author:

Pajor Ana M.1,Sun Nina N.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555

Abstract

The sodium-dicarboxylate cotransporter of the renal proximal tubule, NaDC-1, reabsorbs filtered Krebs cycle intermediates and plays an important role in the regulation of urinary citrate concentrations.1 Low urinary citrate is a risk factor for the development of kidney stones. As an initial step in the characterization of NaDC-1 regulation, the genomic structure and functional properties of the mouse Na+-dicarboxylate cotransporter (mNaDC-1) were determined. The gene coding for mNaDC-1, Slc13a2, is found on chromosome 11. The gene is ∼24.9 kb in length and contains 12 exons. The mRNA coding for mNaDC-1 is found in kidney and small intestine. Expression of mNaDC-1 in Xenopus laevis oocytes results in increased transport of di- and tricarboxylates. The Michaelis-Menten constant ( K m) for succinate was 0.35 mM, and the K m for citrate was 0.6 mM. The transport of citrate was stimulated by acidic pH, whereas the transport of succinate was insensitive to pH changes. Transport by mNaDC-1 is electrogenic, and substrates produced inward currents in the presence of sodium. The sodium affinity was relatively high in mNaDC-1, with half-saturation constants for sodium of 10 mM (radiotracer experiments) and 28 mM at −50 mV (2-electrode voltage clamp experiments). Lithium acts as a potent inhibitor of transport, but it can also partially substitute for sodium. In conclusion, the mNaDC-1 is related in sequence and function to the other NaDC-1 orthologs. However, its function more closely resembles the rabbit and human orthologs rather than the rat NaDC-1, with which it shares higher sequence similarity.

Publisher

American Physiological Society

Subject

Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3