Vasopressin-dependent upregulation of aquaporin-2 gene expression in glucocorticoid-deficient rats

Author:

Saito Takako1,Ishikawa San-E1,Ando Fumiko1,Higashiyama Minori1,Nagasaka Shoichiro1,Sasaki Sei2,Saito Toshikazu1

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical School, Tochigi 329-0498; and

2. Second Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo 113-0034, Japan

Abstract

We determined alterations in renal aquaporin-2 (AQP2) gene expression in association with impaired water excretion in glucocorticoid-deficient rats. After adrenalectomy, Sprague-Dawley rats were administered aldosterone alone by osmotic pumps (glucocorticoid-deficient rats). As a control, both aldosterone and dexamethasone were administered. These animals were subjected to the studies on days 7–14. The expressions of AQP2 mRNA and protein in kidney of the glucocorticoid-deficient rats were increased by 1.6- and 1.4-fold compared with the control rats, respectively. An acute oral water load test verified the marked impairment in water excretion in the glucocorticoid-deficient rats. One hour after the water load, the expressions of AQP2 mRNA and protein were significantly reduced in the control rats, but they remained unchanged in the glucocorticoid-deficient rats. However, there was no alteration in [3H]arginine vasopressin (AVP) receptor binding and AVP V2 receptor mRNA expression in the glucocorticoid-deficient rats. A V2-receptor antagonist abolished the increased expressions of AQP2 mRNA and protein in the glucocorticoid-deficient rats. These results indicate that augmented expression of AQP2 participates in impaired water excretion, dependent on AVP, in glucocorticoid deficiency.

Publisher

American Physiological Society

Subject

Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3