Renal cortical interstitium and fluid absorption by peritubular capillaries

Author:

Aukland K.1,Bogusky R. T.1,Renkin E. M.1

Affiliation:

1. Department of Human Physiology, University of California, Davis95616.

Abstract

Every minute, the cortical peritubular capillaries in a 1-g rat kidney take up more than 0.5 ml tubular reabsorbate. Studies of renal lymph and measurements of pressure in capillaries (Pc) and interstitium (Pi) indicate that normally the protein colloid osmotic pressure of peritubular capillary plasma (COPp) provides the necessary absorptive force, keeping Pi at 2-4 mmHg, i.e., 8-10 mmHg lower than Pc. At reduced COPp, continued delivery of fluid from the tubules automatically raises Pi to maintain capillary fluid uptake. The transient Pi response to sudden exposure of the kidney to subatmospheric pressure shows that such adjustment of forces may take place in only 5 s. Most remarkable, adjustment of forces may take place in only 5 s. Most remarkable, reabsorption continues during protein-free perfusion of the isolated rat kidney, apparently effected by a Pi exceeding Pc. A relative retardation of interstitial uptake of ferritin from plasma in this case suggests fluid reabsorption through both small and large pores in the capillary wall. Collapse of the capillaries is presumably prevented by tight tethering to the capillary wall, giving the narrow interstitium a very low compliance.

Publisher

American Physiological Society

Subject

Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3