Mechanisms of bicarbonate transport by cultured rabbit inner medullary collecting duct cells

Author:

Weill A. E.1,Tisher C. C.1,Conde M. F.1,Weiner I. D.1

Affiliation:

1. Division of Nephrology, Hypertension and Transplantation, Universityof Florida College of Medicine, Gainesville 32610.

Abstract

The inner medullary collecting duct (IMCD) is the final portion of the mammalian renal tubule that is able to significantly regulate systemic acid-base balance. Although the H+ transporters of this segment are relatively well studied, little is known regarding the mechanisms of HCO3- transport. The mechanisms of HCO3- transport in primary cultures of rabbit IMCD were studied using the pH-sensitive dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, in CO2/HCO3(-)-containing solutions at 37 degrees C. Removal of Cl- from the extracellular solution caused reversible intracellular alkalinization, demonstrating the presence of Cl-/HCO3- exchange. Alkalinization with Cl- removal was independent of changes in membrane potential, did not require the presence of extracellular Na+, and was inhibited by the disulfonic stilbene, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 10(-4) M). Half-maximal intracellular pH (pHi) recovery with readdition of Cl- to the extracellular solution occurred at a Cl- concentration of 37.4 +/- 5.7 mM. When rabbit IMCD were cultured on permeable support membranes, Cl-/HCO3- exchange activity was found only on the basolateral membrane. However, there was no evidence of band 3 protein immunoreactivity. In contrast, no evidence for Na(+)-(HCO3-)n > 1 cotransport activity was found. Depolarization of IMCD cells by acute increases in extracellular K+ did not alter pHi, nor was Na(+)-dependent, 5-(N-ethyl-N-isopropyl)amiloride-insensitive pHi recovery from an acid load inhibited by DIDS (10(-4) M). Finally, recovery from intracellular alkalosis induced by incubation in 0 mM Cl-, 50 mM HCO3- extracellular solution required Cl- and was independent of Na+. These studies indicate that the major mechanism of HCO3- transport in primary cultures of the rabbit IMCD is via a band 3 protein-negative, Na(+)-independent, basolateral, Cl-/HCO3- exchanger.

Publisher

American Physiological Society

Subject

Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3