Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis

Author:

Chon K. H.1,Chen Y. M.1,Marmarelis V. Z.1,Marsh D. J.1,Holstein-Rathlou N. H.1

Affiliation:

1. Department of Biomedical Engineering, University of Southern California, Los Angeles 90033.

Abstract

Previous studies using linear techniques have provided valuable insights into the dynamic characteristics of whole kidney autoregulation and have led to the general conclusion that the myogenic mechanism and tubuloglomerular feedback (TGF) are highly nonlinear control mechanisms. To explore further the dynamic nature of these nonlinear autoregulatory mechanisms, we introduce the technique of nonlinear modeling using Volterra-Wiener kernels. In the past several years, use of Volterra-Wiener kernels for nonlinear approximation has been most notably applied to neurophysiology. Recent advances in algorithms for computation of the kernels have made this technique more attractive for the study of the dynamics of nonlinear physiological systems, such as the system mediating renal autoregulation. In this study, the general theory and requirements for using this technique are discussed. The feasibility of using the technique on whole kidney pressure and flow data is examined, and a basis for using the Volterra-Wiener kernels to detect interactions between physiological control mechanisms is established. As a result of this method, we have identified the presence of interactions between the oscillating components of the myogenic and the TGF mechanisms at the level of the whole kidney blood flow in normotensive rats. An interaction between these oscillatory components had previously been demonstrated only at the single-nephron level.

Publisher

American Physiological Society

Subject

Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3