Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles

Author:

Edwards R. M.

Abstract

The effects of arachidonic acid, prostaglandins (PG) I2, E2, D2, and F2 alpha on norepinephrine- (NE) and angiotensin II- (ANG II) induced tone were examined in interlobular arteries and afferent and efferent arterioles isolated from rabbit kidney. Arachidonic acid at 10(-5) M produced a rapid relaxation of NE-induced tone in all three vessel types. The vasodilatory effect of arachidonic acid but not acetylcholine was blocked by meclofenamate. In interlobular arteries, PGE2, and PGI2 caused a dose-dependent relaxation of NE-induced tone with a concentration causing the half-maximal response (ED50) of 1.2 and 4.6 X 10(-8) M, respectively. PGD2 caused a small but significant relaxation at 10(-7) M and above, whereas PGF2 alpha was inactive. In afferent arterioles contracted with NE, PGE2 and PGI2 caused identical dose-dependent relaxations. Significant effects were observed at concentrations between 10(-11) and 10(-10) M with ED50 values of 1.7 X 10(-8) M for PGE2 and 8.7 X 10(-9) M for PGI2. PGD2 had significant effects only at 10(-5) M, whereas PGF2 alpha was without effect. In contrast to the preglomerular vessels, efferent arterioles responded only to PGI2 (ED50, 9.7 X 10(-9) M), and the other arachidonic acid metabolites had no effect on lumen diameter. PGI2 antagonized the vasoconstrictive effects of both NE and ANG II in this vessel segment. The results demonstrate that of the prostanoids tested only PGE2 and PGI2 were effective in antagonizing vasoconstrictor stimuli in isolated renal microvessels. Furthermore, the rabbit renal microvasculature displays segmental heterogeneity for the vasodilatory PGs in that PGI2 affected both pre- and postglomerular arterioles, whereas PGE2 was effective only on the preglomerular microvessels.

Publisher

American Physiological Society

Subject

Physiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3