Water and urea transport in renal microvillus membrane vesicles

Author:

Verkman A. S.,Dix J. A.,Seifter J. L.

Abstract

Light scattering was used to measure the water and urea permeability of brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. In stop-flow experiments, exposure of BBMV to a 200 mM inwardly directed mannitol gradient gave a monophasic time course of decreasing BBMV volume corresponding to an osmotic water permeability (Pf) of 1.1 +/- 0.1 X 10(-2) cm/s at 37 degrees C. The temperature dependence of Pf was biphasic with delta H = 2 kcal/mol for T less than 33 degrees C and delta H = 14 kcal/mol for T greater than 33 degrees C. A 200 mM inwardly directed urea gradient gave a biphasic time course of BBMV volume due to rapid water efflux (approximately 50 ms) followed by slower urea influx (1-5 s) with urea permeability (Purea) of 2.4 +/- 0.2 X 10(-6) cm/s. Preincubation of BBMV with increasing [urea] reversibly inhibited both urea flux (Kd = 1,200 mM) and thiourea flux (Kd = 370 mM) according to a single-site inhibition model, suggesting a saturable urea carrier. Comparison of BBMV Pf and Purea with proximal tubule transepithelial water and urea transport rates suggests that the permeability of the tubular apical membrane (BBMV) is high enough to support a transcellular route for both osmotic water and urea transport.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3