Prostaglandins in the sodium excretory response to altered renal arterial pressure in dogs

Author:

Carmines P. K.,Bell P. D.,Roman R. J.,Work J.,Navar L. G.

Abstract

Acute variations in renal arterial pressure are associated with corresponding alterations in absolute and fractional sodium excretion even under conditions of highly efficient autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR). Since prostaglandins recently have been implicated in the regulation of sodium excretion, we investigated the hypothesis that the renal prostaglandin system participates in "pressure natriuresis." Anesthetized sodium-replete dogs were subjected to partial carotid artery constriction to elevate systemic arterial pressure. Under these control conditions, sodium excretion was 103 +/- 18 mueq/min (n = 17) and urinary prostaglandin E2 excretion averaged 4.6 +/- 1.5 ng/min (n = 8). Decreases in renal arterial pressure within the auto-regulatory range reduced sodium excretion (2.1%/mmHg) and prostaglandin E2 excretion (1.7%/mmHg), whereas GFR and RBF were not affected. There was a significant correlation between the changes in sodium and prostaglandin E2 excretion rates (r = 0.932, P less than 0.01). In nine dogs treated with indomethacin, sodium excretion was reduced by 70% while GFR and autoregulatory capability were unaffected. There was a marked attenuation of the effect of changes in arterial pressure on sodium excretion, with this parameter exhibiting changes averaging 0.6%/mmHg (P less than 0.001). These observations suggest that the renal prostaglandin system may exert an important influence on the pressure-natriuresis mechanism.

Publisher

American Physiological Society

Subject

Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modulation of mean arterial pressure and diuresis by renomedullary infusion of a selective inhibitor of fatty acid amide hydrolase;American Journal of Physiology-Renal Physiology;2018-10-01

2. Renal Autoregulation in Health and Disease;Physiological Reviews;2015-04

3. Cyclooxygenase Metabolites in the Kidney;Comprehensive Physiology;2011-10

4. Exogenous 5′-nucleotidase improves glomerular autoregulation in Thy-1 nephritic rats;American Journal of Physiology-Renal Physiology;2006-04

5. Heme oxygenase and the cardiovascular–renal system;Free Radical Biology and Medicine;2005-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3