Effect of pH on phosphate transport in rat renal brush border membrane vesicles

Author:

Amstutz M.,Mohrmann M.,Gmaj P.,Murer H.

Abstract

The initial linear rate of phosphate uptake was analyzed in rat renal brush border membrane vesicles. An increase in medium pH from 6.0 to 8.0 increased the sodium gradient-dependent phosphate uptake about 20-fold. Sodium-independent phosphate uptake was not altered in this pH range. At pH 7.4 an intravesicular acid pH stimulated the initial linear uptake rate (20-25%). The apparent Km for sodium increased from about 100 to 200 mM when pH was decreased from 7.4 to 6.4. The Hill coefficient for sodium interaction was close to 2 and was unaffected by pH. Increasing external sodium reduced the apparent Km of the transport system for phosphate independent of pH. Variations of phosphate concentration had no influence on the apparent Km for sodium. At high sodium concentrations, small effects (20-30%) of pH on the apparent Vmax of the transport system were found; measured at saturating sodium concentrations, the apparent Km values calculated on the basis of total phosphate were increased (50-60%) when pH was decreased from 7.4 to 6.4. The data indicate that the major effect of pH is to modify the interaction of the transport system with sodium. At nonsaturating sodium concentrations, this resulted indirectly in a reduction in the affinity for phosphate related to a different occupancy of the sodium binding site. The differences of transport rate at low phosphate and high sodium concentrations could be explained by preferential transport of divalent phosphate as well as by pH effects on other carrier properties.

Publisher

American Physiological Society

Subject

Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms and Regulation of Intestinal Phosphate Absorption;Comprehensive Physiology;2018-06-18

2. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter;Cell Reports;2018-04

3. Intestinal phosphate absorption is mediated by multiple transport systems in rats;American Journal of Physiology-Gastrointestinal and Liver Physiology;2017-04-01

4. Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2016-12-01

5. Na+-independent phosphate transport in Caco2BBE cells;American Journal of Physiology-Cell Physiology;2014-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3