Plasma and urinary p21: potential biomarkers of AKI and renal aging

Author:

Johnson Ali C.1,Zager Richard A.12

Affiliation:

1. The Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington

2. Department of Medicine, University of Washington, Seattle, Washington

Abstract

p21 is upregulated in renal tubules in response to acute kidney injury ( AKI). and localizes in the nucleus, where it induces cell cycle arrest (CCA). These events can mitigate early injury but can also facilitate the onset of the degenerative cell senescence/“aging” process. Hence, we asked the following: 1) can AKI-induced p21 upregulation be gauged by plasma and/or urinary p21 assay; 2) might p21 serve as an AKI/CCA biomarker; and 3) does p21 accumulate during normal renal aging, and might plasma p21 reflect this process? Mice were subjected to either ischemia-reperfusion (I/R) or nephotoxic (maleate) AKI. Renal cortical p21 expression (protein, mRNA) was assessed 2–18 h later and contrasted with plasma/urine p21 concentrations (ELISA). p21 mRNA/protein levels were also measured in aging mice (2, 12, 24 mo). AKI induced marked, progressive, increases in renal cortical p21 mRNA and protein levels. These changes were marked by acute (within 2–4 h) and profound increases (up to 200×) in both plasma and urine p21 concentrations. Renal I/R also activated p21 gene expression in extrarenal organs (heart, brain), consistent with so-called “organ cross talk”. p21 efflux from damaged cells was confirmed with studies of hypoxia-injured, isolated proximal tubules. Aging was associated with progressive renal cortical p21 expression, which correlated ( r, 0.83) with rising plasma p21 concentrations. We concluded that 1) during AKI, renal p21 increases can be gauged by either plasma or urine p21 assay, serving as potentially useful AKI/CCA biomarkers; 2) AKI can activate p21 in extrarenal organs; and 3) plasma p21 levels may provide an index of the renal/systemic aging process.

Funder

Descretionary research funds, Fred Hutchinson Cancer Center

Renibus Therapeutics

Publisher

American Physiological Society

Subject

Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3