Functional evidence for a Ca2+/polyvalent cation sensor in the mouse thick ascending limb

Author:

Paulais M.1,Baudouin-Legros M.1,Teulon J.1

Affiliation:

1. Institut National de la Sante et de la Recherche Medicale Unite 323, Faculte de Medecine Necker, Paris, France.

Abstract

The effects of extracellular polyvalent cations on the cytosolic free Ca2+ concentration ([Ca2+]i) of isolated segments of the mouse nephron were investigated using fura 2 microfluorometry. Extracellular Ca2+ concentration ([Ca2+]o), gadolinium (Gd3+), and neomycin (Neo) increased the [Ca2+]i in cortical thick ascending limb (CTAL) tubules with effective doses (ED50) of approximately 3.5 mM for Ca2+, 20 microM for Gd3+, and 40 microM for Neo. This effect was reproduced by Ba2+ but not by Mg2+. High [Ca2+]o inhibited the responses to Gd3+, Neo, and Ba2+. The Gd(3+)- and Neo-evoked [Ca2+]i transients persisted in the absence of external Ca2+ and were abolished by the depletion of internal Ca2+ stores with thapsigargin (TG). The responses to rises in [Ca2+]o were similarly inhibited by TG and slightly reduced by 20 microM La3+ but not by 10 microM nifedipine. Mn2+ also mobilized a TG-sensitive internal Ca2+ store and stimulated its own entry. External Ca2+, Gd3+, and Neo induced small but significant increases in [Ca2+]i in distal convoluted tubule, cortical collecting duct, and outer medullary collecting duct segments, transiently increased [Ca2+]i in some medullary TAL (MTAL) tubules, but had no effect on descending thin limb. We conclude that a Ca(2+)-mobilizing Ca2+/polyvalent cation sensor resembling that of the parathyroid gland cells is predominantly located in the mouse CTAL but also in the MTAL and, to a lesser extent, in more distal segments.

Publisher

American Physiological Society

Subject

Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Na+- and Cl−-activated K+ Channel in the Thick Ascending Limb of Mouse Kidney;Journal of General Physiology;2006-01-30

2. Recent advances in physiological calcium homeostasis;Clinical Chemistry and Laboratory Medicine (CCLM);2006-01-01

3. THE CALCIUM-SENSING RECEPTOR IN NORMAL PHYSIOLOGY AND PATHOPHYSIOLOGY: A Review;Critical Reviews in Clinical Laboratory Sciences;2005-01

4. Renal COX-2, Cytokines and 20-HETE: Tubular and Vascular Mechanisms;Current Pharmaceutical Design;2004-02-01

5. Calcium-sensing receptor and renal cation handling;Nephrology Dialysis Transplantation;2003-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3