Dietary HCO3 reduces distal tubule acidification by increasing cellular HCO3 secretion

Author:

Wesson D. E.1

Affiliation:

1. Texas Tech University Health Sciences Center, Lubbock 79430, USA.

Abstract

We examined the components of net HCO3 reabsorption (H+/HCO3 secretion and transepithelial HCO3 permeability) in in vivo perfused distal tubules of anesthetized rats to determine the mechanisms by which dietary HCO3 reduces acidification in this nephron segment. Animals eating a minimum electrolyte diet drank either (in mM) 80 NaHCO3, 80 NaCl, or 40 Na2SO4 for 7-10 days and were compared with controls drinking distilled H2O. On perfusion with a HCO3- and Cl- -containing solution, net HCO3 reabsorption was lower than control in only the NaHCO3 animals (14.4 +/- 1.3 vs. 4.1 +/- 0.5 pmol.mm-1.min-1, P < 0.001). On perfusion with a 0 HCO3-0 Cl- solution, distal tubule luminal HCO3 accumulation (JHCO3) was higher in NaHCO3 animals than control (-13.7 +/- 1.3 vs. -4.7 +/- 0.7 pmol.mm-1.min-1, P < 0.002). Despite a higher JHCO3, estimated transepithelial HCO3 permeability in the NaHCO3 animals was similar to control [0.52 +/- 0.06 vs. 0.36 +/- 0.04 x 10(-7) cm2/s, P = not significant (NS)]. Luminal acetazolamide (Az) reduced JHCO3 in NaHCO3 animals to a level similar to control (-6.2 +/- 0.6 vs. -4.0 +/- 0.5 pmol.mm-1.min-1, P = NS) in this nephron segment containing cells with cytoplasmic but no luminal carbonic anhydrase activity. Including Cl- in the initial perfusate increased JHCO3 in NaHCO3 animals only (-20.8 +/- 1.9 vs. -13.7 +/- 1.3 pmol.mm-1.min-1, P < 0.02), and this increase was inhibited by luminal Az. Calculated H+ secretion was similar among groups. Together, the data indicate that dietary HCO3 reduces distal tubule acidification by increasing Az-sensitive generation of HCO3 by distal tubule cells that enters the lumen by a mechanism augmented by luminal Cl-.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3