Affiliation:
1. Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA.
Abstract
Because the mammalian bladder must store urine of composition which differs markedly from that of plasma for prolonged periods, the bladder permeability barrier must maintain extremely low permeabilities to substances which normally cross membranes relatively rapidly, such as water, protons, and small nonelectrolytes like urea and ammonia. In the present studies, permeabilities of the apical membrane of dissected rabbit bladder epithelium to water, urea, ammonia, and protons were measured in Ussing chambers and averaged (in cm/s) for water, 5.15 +/- 0.43 x 10(-5); for urea, 4.51 +/- 0.67 x 10(-6); for ammonia, 5.14 +/- 0.62 x 10(-4); and for protons, 2.98 +/- 1.87 x 10(-3), respectively. These permeability values are exceptionally low and are expected to result in minimal to no leakage of these normally permeable substances across the epithelium. Water permeabilities in intact whole rabbit bladders were indistinguishable from those obtained in the dissected epithelial preparation. Moreover, addition of nystatin to the apical solution of dissected epithelia rapidly increased water permeability in conjunction with loss of epithelial resistance. These results confirm that the apical membrane of the bladder epithelial cells represents the bladder permeability barrier. In addition, they establish a model system that will permit examination of how membrane structure reduces permeability and how epithelial injury compromises barrier function.
Publisher
American Physiological Society
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献